Your Ad Here

Saturday, November 21, 2009

SENSOTRONIC BRAKE CONTROL (SBC™)

0 comments
ABSTRACT

Sensotronic Brake Control (SBC™) works electronically, and thus faster and more precisely, than a conventional hydraulic braking system. As soon as you press the brake pedal and the sensors identify the driving situation in hand, the computer makes an exact calculation of the brake force necessary and distributes it between the wheels as required. This allows SBC™ to critically reduce stopping distances. SBC™ also helps to optimise safety functions such as ESP®, ASR, ABS and BAS.

With Sensotronic Brake Control, electric impulses are used to pass the driver's braking commands onto a microcomputer which processes various sensor signals simultaneously and, depending on the particular driving situation, calculates the optimum brake pressure for each wheel. As a result, SBC offers even greater active safety than conventional brake systems when braking in a corner or on a slippery surface. A high-pressure reservoir and electronically controllable valves ensure that maximum brake pressure is available much sooner. Moreover, the system offers innovative additional functions to reduce the driver's workload. These include Traffic Jam Assist, which brakes the vehicle automatically in stop-and-go traffic once the driver takes his or her foot off the accelerator. The Soft-Stop function - another first - allows particularly soft and smooth stopping in town traffic




INTRODUCTION

When drivers hit the brake pedal today, their foot moves a piston rod which is linked to the brake booster and the master brake cylinder. Depending on the pedal force, the master brake cylinder builds up the appropriate amount of pressure in the brake lines which - in a tried and tested interaction of mechanics and hydraulics - then presses the brake pads against the brake discs via the wheel cylinders.
By contrast, in the Mercedes-Benz Sensotronic Brake Control, a large number of mechanical components are simply replaced by electronics. The brake booster will not be needed in future either. Instead sensors gauge the pressure inside the master brake cylinder as well as the speed with which the brake pedal is operated, and pass these data to the SBC computer in the form of electric impulses. To provide the driver with the familiar brake feel, engineers have developed a special simulator which is linked to the tandem master cylinder and which moves the pedal using spring force and hydraulics. In other words: during braking, the actuation unit is completely disconnected from the rest of the system and serves the sole purpose of recording any given brake command. Only in the event of a major fault or power failure does SBC automatically use the services of the tandem master cylinder and instantly establishes a direct hydraulic link between the brake pedal and the front wheel brakes in order to decelerate the car safely.
The central control unit under the bonnet is the centrepiece of the electrohydraulic brake. This is where the interdisciplinary interaction of mechanics and electronics provides its greatest benefits - the microcomputer, software, sensors, valves and electric pump work together and allow totally novel, highly dynamic brake management:
In addition to the data relating to the brake pedal actuation, the SBC computer also receives the sensor signals from the other electronic assistance systems. For example, the anti-lock braking system (ABS) provides information about wheel speed, while Electronic Stability Program (ESP®) makes available the data from its steering angle, turning rate and transverse acceleration sensors. The transmission control unit finally uses the data highway to communicate the current driving range. The result of these highly complex calculations is rapid brake commands which ensure optimum deceleration and driving stability as appropriate to the particular driving scenario. What makes the system even more sophisticated is the fact that SBC calculates the brake force separately for each wheel.

SENSOTRONIC BRAKE CONTROL - THE BRAKES OF THE FUTURE

Sensotronic Brake Control (SBC) is the name given to an innovative electronically controlled brake system which Mercedes-Benz will fit to future passenger car models. Following on from the Mercedes innovations ABS, ASR, ESP® and Brake Assist, this system is regarded as yet another important milestone to enhance driving safety. With Sensotronic Brake Control electric impulses are used to pass the driver’s braking commands onto a microcomputer which processes various sensor signals simultaneously and, depending on the particular driving situation, calculates the optimum brake pressure for each wheel. As a result, SBC offers even greater active safety than conventional brake systems when braking in a corner or on a slippery surface. A high-pressure reservoir and electronically controllable valves ensure that maximum brake pressure is available much sooner. Moreover, the system offers innovative additional functions to reduce the driver’s workload. These include Traffic Jam Assist, which brakes the vehicle automatically in stop-and-go traffic once the driver takes his or her foot off the accelerator. The Soft-Stop function – another first – allows particularly soft and smooth stopping in town traffic.

Mechatronics – a new term is gaining popularity within the automotive industry and is rapidly developing into the catchword of a quiet technological revolution which in many fields stands century-old principles on their head. Mechatronics brings together two disciplines which in many cases were thought to be irreconcilable, namely mechanics and electronics.

Hence automobile functions which hitherto worked purely mechanically and partly with hydraulic assistance will in future be controlled by high-performance microcomputers and electronically controllable actuators. These either replace the conventional mechanical components or else enhance their function. The mechatronic interplay therefore opens up hitherto inconceivable possibilities to further raise the safety and comfort levels of modern passenger cars. For example: it was only thanks to mechatronics that an electronically controlled suspension system which instantly adapts to prevailing conditions when driving off, braking or cornering -- thus providing a totally new driving experience -- became a reality. In 1999 Mercedes-Benz launched this system under the name Active Body Control (ABC) in the flagship CL coupé, thereby signalling the advent of a new era of suspension technology.

This electronically controlled suspension system will quickly be followed by the electronic brake system: Mercedes-Benz and Bosch have teamed up on this benchmark development project which will shortly enter into series production at the Stuttgart automobile brand under the name Sensotronic Brake Control -- or SBC for short.

It turns the conventional hydraulic brake into an even more powerful mechatronic system. Its microcomputer is integrated into the car’s data network and processes information from various electronic control units. In this way, electric impulses and sensor signals can be instantly converted into braking commands, providing a marked safety and comfort gain for drivers.






















Brake pedal: electronics instead of a vacuum


To turn to the technical side: when drivers hit the brake pedal today, their foot moves a piston rod which is linked to the brake booster and the master brake cylinder. Depending on the pedal force, the master brake cylinder builds up the appropriate amount of pressure in the brake lines which – in a tried and tested interaction of mechanics and hydraulics - then presses the brake pads against the brake discs via the wheel cylinder.

In the Mercedes-Benz Sensotronic Brake Control, by contrast, a large number of mechanical components are simply replaced by electronics. The brake booster will not be needed in future either. Instead sensors gauge the pressure inside the master brake cylinder as well as the speed with which the brake pedal is operated, and pass these data to the SBC computer in the form of electric impulses.

To provide the driver with the familiar brake feel engineers have developed a special simulator which is linked to the tandem master cylinder and which moves the pedal using spring force and hydraulics. In other words: during braking the actuation unit is completely disconnected from the rest of the system and serves the sole purpose of recording any given brake command. Only in the event of a major fault or power failure inside the 12V vehicle battery does SBC automatically use the services of the tandem master cylinder and instantly establishes a direct hydraulic link between the brake pedal and the front wheel brakes in order to decelerate the car safely.

Control unit: pressure modulators for each wheel

The central control unit under the bonnet is the centrepiece of the electrohydraulic brake. This is where the interdisciplinary interaction of mechanics and electronics provides its greatest benefits – the microcomputer, software, sensors, valves and electric pump work together and allow totally novel, highly dynamic brake management:
In addition to the data relating to the brake pedal actuation, the SBC computer also receives the sensor signals from the other electronic assistance systems. For example, the anti-lock braking system (ABS) provides information about wheel speed, while ESP® makes available the data from its steering angle, turning rate and transverse acceleration sensors. The transmission control unit finally uses the data highway to communicate the current driving range. The result of these highly complex calculations is rapid brake commands which ensure optimum deceleration and driving stability as appropriate to the particular driving scenario. What makes the system even more sophisticated is the fact that SBC calculates the brake force separately for each wheel.

The high-pressure reservoir contains the brake fluid which enters the system at a pressure of between 140 and 160 bar. The SBC computer regulates this pressure and also controls the electric pump which is connected to the reservoir. This ensures much shorter response times than on conventional brake systems. Yet another advantage: full braking power is available even when the engine is switched off. The hydraulic unit mainly comprises four so-called wheel pressure modulators. They mete out the brake pressure as required and pass it onto the brakes. In this way it is possible to meet the microcomputer’s stipulations while each wheel is slowed down separately in the interests of driving stability and optimum deceleration. These processes are monitored by pressure sensors inside the wheel pressure modulators.

Emergency braking: stopping distance reduced by up to three per cent

The main performance characteristics of Sensotronic Brake Control include the extremely high dynamics during pressure build-up and the exact monitoring of driver and vehicle behaviour using sophisticated sensors. Mercedes-Benz is thus moving into new dimensions of driving safety. Take the example of the emergency brake: SBC already recognises the driver’s rapid movement from the accelerator onto the brake pedal as a clue to an imminent emergency stop and responds automatically: with the aid of the high-pressure reservoir, the system increases the pressure inside the brake lines and instantly presses the pads onto the brake discs so that they can get a tight grip the moment the driver steps onto the brake pedal. As a result of this so-called prefilling of the brake system, the stopping distance of an SBC-equipped sports car from a speed of 120 km/h is cut by around three per cent compared to a car featuring conventional braking technology.

Thanks to electrohydraulic back-up, the performance of Brake Assist is also improved further. If this system issues the command for an automatic emergency stop, the quick pressure build-up and the automatic prefilling of the wheel brakes leads to a shorter braking distance.

Driving stability: precise braking impulses for perfect ESP® performance



































It is not just in emergency braking that Sensotronic Brake Control proves its worth, but also in other critical situations – for example, when there is a risk of swerving. Under such conditions, the system interacts with the Electronic Stability Program (ESP®) which keeps the vehicle safely on course through precise braking impulses at all wheels and/or by reducing engine speed. SBC once again offers the benefits of greater dynamics and precision: thanks to the even faster and more accurate braking impulses from the SBC high-pressure reservoir, ESP® is able to stabilise early and comfortably a vehicle which is about to break away.

This is evident, for example, from the results of the VDA lane-change test which suspension engineers use to simulate a quick obstacle-avoidance manoeuvre and to demonstrate the high capabilities of the Electronic Stability Program. In conjunction with SBC, ESP® works even more effectively and significantly reduces vehicle swerving through quick and precise braking impulses.

At the same time the driver’s steering effort is reduced. Thanks to SBC and ESP® he or she will have even less difficulty keeping the car on course.





























Copyright DaimlerChrysler AG
With Sensotronic there is no need for ESP intervention when braking in a curve.


Braking in a curve. Left: conventional. Right: with SBC.

Notice the unequal braking force, smaller lateral force, better stability and alignment with SBC.

Braking in corners: greater safety thanks to variable brake force distribution

Even when braking in corners, SBC also offers more safety than a conventional brake system. This is where the variable and targeted brake force distribution is of particular advantage to actively influence the car’s compliance steer.

While conventional brake systems always mete out the brake pressure equally to the inner and outer wheels, SBC offers the possibility of assigning brake forces in a way appropriate to the situation. Hence the system will automatically increase the brake pressure at the outer wheels because the higher vertical forces also allow them to transfer greater brake forces. At the same time the brake forces at the inner wheels are reduced to provide the higher cornering forces needed to stay on course. The result is a more stable braking behaviour along with optimum deceleration values.

With the innovative Sensotronic Brake Control Mercedes engineers still stick to the proven principle of a variable brake force control for the front and rear axles. They program the system in such a way that, when slowing down from a high speed, the larger part of the brake force continues to act on the front axle. This prevents a potentially hazardous overbraking of the rear axle. Again SBC is capable of adapting to the prevailing situation. At low speeds or during partial braking, the system automatically increases the brake force share at the rear axle to improve brake system response and achieve even wear and tear of the brake pads.

Comfort: no pedal vibrations during ABS operation

Both the separation of the SBC pedal from the rest of the brake system and the proportional pressure control using mechatronics serve to increase brake comfort – particularly during sharp deceleration or when the anti-lock braking system is operational. The usual vibration of the brake pedal when ABS sets in does not occur, which, Mercedes engineers have found, is not only a comfort feature of the new system but also offers measurable safety benefits. Their research in DaimlerChrysler’s Berlin driving simulator has revealed that almost two thirds of all drivers are startled when ABS pulsation sets in: they do not increase the brake force further and are even prone to taking their foot off the brake pedal for a short while, thereby lengthening the stopping distance of their vehicle – in the driving simulator by an average of 2.10 metres - 7 feet - during ABS braking from 60 km/h - 37 MPH - on a snow-covered road surface.

SBC add-on functions: support systems to reduce driver strain

Sensotronic Brake Control offers additional advantages in everyday driving situations – when slowing down ahead of traffic lights, in the wet, in traffic jams or hill starts:

The so-called Soft-Stop function of the SBC software ensures particularly gentle and smooth stopping which provides significant comfort benefits particularly around town when you need to slow down frequently for traffic lights. All this is made possible by the higher-precision pressure control thanks to mechatronics. On a wet road surface the system metes out short brake impulses at regular intervals to ensure that the water film on the brake discs dries off and that SBC can always operate with optimum effectiveness. This automatic dry-braking function is activated at regular intervals when the car’s windscreen wipers are running. The driver does not even notice these ultra-precise brake impulses.

The Sensotronic Brake Control also incorporates a so-called Traffic Jam Assist function, which is activated using the cruise control stalk while the car is stationary. The benefit is that during stop-and-go traffic drivers only need to use the accelerator pedal; once they take their foot off the accelerator, SBC slows down the car to standstill at a steady rate of deceleration. The Traffic Jam Assist facility can remain operational up to 60 km/h - 37 MPH - and switches off automatically at higher speeds.

On hills or steep drives the Sensotronic Brake Control Drive-Away Assist prevents the car from rolling backwards or forwards – stepping onto the brake pedal quickly but sharply is all it takes to activate the brake. If the driver accelerates, the Drive-Away Assist releases the brake and allows the car to drive off smoothly.
The future: SBC paving the way for automatic guidance systems

The advent of electronics in brake technology opens up new and promising opportunities to Mercedes engineers - and not only in the disciplines of safety and comfort. Thanks to SBC they have also moved a considerable way closer to the realisation of their long-term objective, namely to be able to automatically guide the cars of the future along the roads with the aid of video cameras, proximity radar and advanced telematics. For such autonomous vehicle guidance, the experts need a computer-controlled brake system which automatically acts on the instructions of an electronic autopilot and stops the car safely.

The concept for the pressure sensor

The major requirements of a pressure sensor for X-by-Wire applications, as previously mentioned, are high precision and reliability as well as multi functionality and flexibility, features strongly desired in modern sensor design. These requirements have heavily influenced the design choices. In order to enhance the precision it has been conceived a silicon micro machined piezo-resistive pressure sensor chip with two different sensitivities: a higher one in a low-pressure range (0 to 30 bar), where often an elevated resolution is required, and a lower one at higher pressures (up to 250 bar). Thus, with one single membrane chip, practically two sensors are obtained. Moreover, as it will be explained further on more in details, the transition between the two sensitivity levels determines an area with particularly interesting characteristics that could be used to recalibrate the sensor from offsets without having to remove it from the system where it normally operates and mount it on a reference bench. Somehow what could be called a “self-recalibration” ability. Enhancing the reliability and the therefore the availability of a sensor needs stability in the components and sensor health monitoring strategies. This latter is possible through an integrated digital electronic that would hence allow self-test functions. Key point of these procedures is the previously mentioned recalibration area, which potentially allows monitoring offsets with a precision up to 0.15 % full scale (FS) without need on integrated actuators and the relative control electronic. A digital electronic can also be designed, without major difficulties, to integrate a controller for networking (Controlled Area Network, for example), consequently enhancing the capabilities and the flexibility of the sensor.
2.1 Two levels sensitivity and recalibration

The transduction of the physical quantity, pressure in the specific case, into an electrically measurable figure is performed though piezo-resistive elements implanted on the surface of the of the silicon chip. This type of transducers is sensitive to the stresses in the two coordinates defined with respect to the plane where the elements are implanted in the chip (8). The stresses on the piezo-resistors induce changes in their resistance that can be detected with rather high accuracy as unbalance of a Wheaston bridge. The stresses on the chip surface depend on the geometrical characteristics of the latter and on the forces deriving from the applied pressure (9). Therefore transducers are usually placed in such a way to have maximum response to the pressure changes and in order to obtain a constant sensitivity. Normally small variations in the sensitivity are undesirable as they complicate the calibration process and often reduce the sensor accuracy. On the contrary, in the presented design, a drastical change in the sensitivity as been conceived through a major variation of the sensor geometry. This characteristic has been exploited to realize the two sensitivity ranges.

























The sensor consists of a membrane structure at which centre is placed a cylindrical structure (a centreboss membrane) as shown in fig. 1. As the pressure is applied, from top, the membrane will move freely downward: this determines a rather sensitive sensor response, which will continue until 30 bar is reached. At this point the cylinder will enter into contact with the silicon bulk plate. Consequently the geometrical structure of the sensor will almost instantly change: the membrane will not be able to move freely any more and will behave more like a ring fixed at the two sides. The stiffness of the structure will significantly increase, thus the building up of stresses due to pressure will reduce and thereby the sensitivity will be roughly of a four factor smaller than the one between 0 and 30 bar. This determines the low sensitivity range that is specified up to 250bar. Fig. 2 summarises graphically what has been here above described.

Moreover the cylindrical central structure makes the membrane fairly robust and resistant to overpressures.




























In silicon the elastic behaviour, opposed to the plastic one, is dominant. Therefore silicon withstands stresses with almost unchanged characteristics: this is what makes it a good material for sensors. Thus it can be expected that in the described design the cylindrical central structure and the respective contact area on the silicon bulk will remain stable. Consequently it can also be expected that the pressure needed to generate the contact between the two parts will remain constant through the sensor lifetime, thereby the transition between the two sensitivity levels will take place always at the same pressure: in fig. 2 this is defined as Recalibration point.

Now, gathering this information together, a contact point is obtained, which is: mechanically determined, constant and independent from the electrical characteristics of the transducers. Therefore, if it is possible to evaluate a procedure to determine this point though the normal sensor operation, than a monitoring and correction of electrical instabilities such as offset drifts can be achieved without need of a reference sensor or external action: a simple example of how this could be obtained will be given in the paragraph 2.2. Moreover, the recalibration principle makes no use of internal actuation system, no actuator control or extra technology is therefore needed: the sensor integrates what can be called a passive recalibration and self-test principle. Furthermore such procedure could enable to avoid long and costly temperature calibrations. Least but not last, the contact or recalibration point is determined through the sensor technology and can be so defined to be different from sensor to sensor. In the case the sensor is operating in a network environment where more of these sensors with different contact pressures are present, it is possible to obtain more recalibration points, potentially increasing the sensor accuracy.

2.2 The integrated digital electronic and the self-test

Digital electronic is often thought to be expensive for pressure sensors. This argument usually does not consider all the potential advantages that it can bring, either because of the difficulty to have a complete overview on them or as a rather significant research effort is needed to be able to exploit them completely. Moreover costs of digital electronic are on the long term continuously decreasing.

In the presented design it has been chosen to make use of a digital electronic in order to implement monitoring and correction strategies in the sensor. Activities are being carried out to investigate all possible failures of the sensor and evaluate their entity, this already at design level. Hence eliminate through design as much of them as possible, particularly those that cannot be automatically detected by the sensor. On the remainder will be in the first place evaluated methods to individuate the errors (self-test) and, when possible, correct them without the outside intervention (recalibration). A diagram of this procedure is described in fig. 3.


































Furthermore network capabilities can be introduced and thereby user tailored functions can be programmed resulting in an enhanced sensor flexibility.
Clearly a complex electronic has not only advantages consideration has to be taken not to introduce further hardware, but also software errors. Central point of the self-test strategies is the previously described “Recalibration point”. The presence of a digital electronic allows performing the drift monitoring and the recalibration internally. A simple example might help the understanding. Lets suppose that the sensor is working in a system where the pressure can rise linearly, namely 250 bar in 8 sec., for simplicity lets also suppose that the sensor has an ideal linear behaviour in the 2 sensitivity ranges (in the real case there will be a linearity error which will ad up to the calculations, on the other hand though the sensor response could be better described by polynomialls of higher order, therefore it has been chosen to stay with the simplest case). During the pressure rise 4 points are sampled through the digital electronic: point one at sensor output around 0 V and the second around 2 V, in the low pressure range, the third at 2.3 V and the fourth at 4 V, in the high pressure one as shown in fig. 4 (a wise choice of the points can influence up to 50% the accuracy with which the recalibration point can be determined). These points are used to define the 2 lines, which intersection will determine the contact voltage. This can be compared with the value stored in the sensor memory at the previous recalibration and, if the difference exceeds the calculation errors, the new value will substitute the old one: the sensor response lines will be adjusted and thereby a recalibration will take place. Key point of this procedure is the dimension of the calculation errors. If the linearity error is not considered, for the reasons previously given, these depend on the sensor A/D converter resolution and the sampling frequency. Therefore, with a 10 bit A/D converter and sampling at 1 kHz a recalibration with approximately a 0.15 % accuracy FS can be obtained. To the reader is left the little mathematic game that takes to the given value.



















The sensor design

Defining a concept for a new sensor is no trivial job. Putting this into a realisable design is even more complex and requires a good deal of experience in sensor manufacturing and simulation techniques. The transducer chip design has been conceived in collaboration between EADS (European Aerospace
Defence and Space company) Deutschland GmbH and AKTIV SENSOR GmbH, with the contribution of the Technical University of Berlin. The electronic design instead was the result of the cooperation of EADS Deutschland GmbH and ELBAU GmbH.
3.1 The chip design

The major difficulty in the design was to realise the change in the mechanical structure in such a way that the sensor response variation between the two configurations would be possibly sharp, but most of all that the response with respect to the pressure change would be monotonous. If this condition is not fulfilled, there is no one to one correspondence between the transducer response and the applied pressure: there will be different pressures that will produce the same output signal, thereby the sensor will be intrinsically unreliable and therefore unusable. Overcoming this problem means that the piezoresistors (the transducing elements) have to see always increasing stresses with the rising of the pressure. Therefore the choice on the piezo-resistor position on the chip membrane is determinant and with it the results of the simulation. The choice that has been made in the positioning of the piezo-resistive elements can be noted that the stress distribution changes significantly before and after the mechanical contact. Moreover it has been chosen design 90-degree profiles in order to reduce the previously described risk: this implies using anisotropy etching. etching. The results of the dry etching process can be seen in fig. 6.





















3.2 The electronic design


The design of the electronic should be maintained to a low level of complexity. Never the less attention should be given to the design in order to be able to implement all the self-test and recalibration features allowed by the design, but at the same time avoiding unnecessary over dimensioning of components that would only reflect itself on an increase of costs. Particular care should be given in taking advantage of the high resolution in the low-pressure range: for example, in the case of a linear analogue or Pulse-Width Modulation (PWM) output is desired, as it normally is in sensor output coding, a high resolution digital to analogue converter is needed. Moreover, in the design is planned: a volatile memory for storing the calibration parameters, a non-volatile one for the programming of the self-test and recalibration algorithms, a PWM module, a CAN module for a bus communication and of course analogue to digital converter to enable the signal processing. In the first prototype a low level of integration has been chosen to enable more design flexibility, never the less most of the needed functions could be performed by a commercially available ASIC which could be integrated in second stage.

REFERENCES

http://www.autospeed.com.au/
http://www.whnet.com/4x4/index.html
http://www.mercedes-benz.com/e/default.htm
http://www.howstuffworks.com
Overdrive Vol. 3., No. 5, January 2001


HY-WIRE TECHNOLOGY

1 comments




Chapter I

Introduction

Cars are immensely complicated machines, but when you get down to it, they do an incredibly simple job. Most of the complex stuff in a car is dedicated to turning wheels, which grip the road to pull the car body and passengers along. The steering system tilts the wheels side to side to turn the car, and brake and acceleration systems control the speed of the wheels.

Given that the overall function of a car is so basic (it just needs to provide rotary motion to wheels), it seems a little strange that almost all cars have the same collection of complex devices crammed under the hood and the same general mass of mechanical and hydraulic linkages running throughout. Why do cars necessarily need a steering column, brake and acceleration pedals, a combustion engine, a catalytic converter and the rest of it?

According to many leading automotive engineers, they don't; and more to the point, in the near future, they won't. Most likely, a lot of us will be driving radically different cars within 20 years. And the difference won't just be under the hood -- owning and driving cars will change significantly, too.


In this article, we'll look at one interesting vision of the future, General Motor's remarkable concept car, the Hy-wire. GM may never actually sell the Hy-wire to the public, but it is certainly a good illustration of various ways cars might evolve in the near future.



















GM's sedan model Hy-wire




Chapter- II

Hy-wire Basics

Two basic elements largely dictate car design today: the internal combustion engine and mechanical and hydraulic linkages. If you've ever looked under the hood of a car, you know an internal combustion engine requires a lot of additional equipment to function correctly. No matter what else they do with a car, designers always have to make room for this equipment.

The same goes for mechanical and hydraulic linkages. The basic idea of this system is that the driver maneuvers the various actuators in the car (the wheels, brakes, etc.) more or less directly, by manipulating driving controls connected to those actuators by shafts, gears and hydraulics. In a rack-and-pinion steering system, for example, turning the steering wheel rotates a shaft connected to a pinion gear, which moves a rack gear connected to the car's front wheels. In addition to restricting how the car is built, the linkage concept also dictates how we drive: The steering wheel, pedal and gear-shift system were all designed around the linkage idea.

The defining characteristic of the Hy-wire (and its conceptual predecessor, the Autonomy) is that it doesn't have either of these two things. Instead of an engine, it has a fuel cell stack, which powers an electric motor connected to the wheels. Instead of mechanical and hydraulic linkages, it has a drive by wire system -- a computer actually operates the components that move the wheels, activate the brakes and so on, based on input from an electronic controller. This is the same control system employed in modern fighter jets as well as many commercial planes.

The result of these two substitutions is a very different type of car -- and a very different driving experience. There is no steering wheel, there are no pedals and there is no engine compartment. In fact, every piece of equipment that actually moves the car along the road is housed in an 11-inch-thick (28 cm) aluminum chassis -- also known as the skateboard -- at the base of the car. Everything above the chassis is dedicated solely to driver control and passenger comfort.

This means the driver and passengers don't have to sit behind a mass of machinery. Instead, the Hy-wire has a huge front windshield, which gives everybody a clear view of the road. The floor of the fiberglass-and-steel passenger compartment can be totally flat, and it's easy to give every seat lots of leg room. Concentrating the bulk of the vehicle in the bottom section of the car also improves safety because it makes the car much less likely to tip over.

But the coolest thing about this design is that it lets you remove the entire passenger compartment and replace it with a different one. If you want to switch from a van to a sports car, you don't need an entirely new car; you just need a new body (which is a lot cheaper).













































The Hy-wire has wheels, seats and windows like a conventional car, but the similarity pretty much ends there. There is no engine under the hood and no steering wheel or pedals inside.




Chapter III

Power

The "Hy" in Hy-wire stands for hydrogen, the standard fuel for a fuel cell system. Like batteries, fuel cells have a negatively charged terminal and a positively charged terminal that propel electrical charge through a circuit connected to each end. They are also similar to batteries in that they generate electricity from a chemical reaction. But unlike a battery, you can continually recharge a fuel cell by adding chemical fuel -- in this case, hydrogen from an onboard storage tank and oxygen from the atmosphere.

The basic idea is to use a catalyst to split a hydrogen molecule (H2) into two H protons (H+, positively charged single hydrogen atoms) and two electrons (e-). Oxygen on the cathode (positively charged) side of the fuel cell draws H+ ions from the anode side through a proton exchange membrane, but blocks the flow of electrons. The electrons (which have a negative charge) are attracted to the protons (which have a positive charge) on the other side of the membrane, but they have to move through the electrical circuit to get there. The moving electrons make up the electrical current that powers the various loads in the circuit, such as motors and the computer system. On the cathode side of the cell, the hydrogen, oxygen and free electrons combine to form water (H2O), the system's only emission product.














































In a hydrogen fuel cell, a catalyst breaks hydrogen molecules in the anode into protons and electrons. The protons move through the exchange membrane, toward the oxygen on the cathode side, and the electrons make their way through a wire between the anode and cathode. On the cathode side, the hydrogen and oxygen combine to form water. Many cells are connected in series to move substantial charge through a circuit.

In a hydrogen fuel cell, a catalyst breaks hydrogen molecules in the anode into protons and electrons. The protons move through the exchange membrane, toward the oxygen on the cathode side, and the electrons make their way through a wire between the anode and cathode. On the cathode side, the hydrogen and oxygen combine to form water. Many cells are connected in series to move substantial charge through a circuit.

One fuel cell only puts out a little bit of power, so you need to combine many cells into a stack to get much use out of the process. The fuel-cell stack in the Hy-wire is made up of 200 individual cells connected in series, which collectively provide 94 kilowatts of continuous power and 129 kilowatts at peak power. The compact cell stack (it's about the size of a PC tower) is kept cool by a conventional radiator system that's powered by the fuel cells themselves.

















The hydrogen tanks and fuel-cell stack in the Hy-wire

This system delivers DC voltage ranging from 125 to 200 volts, depending on the load in the circuit. The motor controller boosts this up to 250 to 380 volts and converts it to AC current to drive the three-phase electric motor that rotates the wheels (this is similar to the system used in conventional electric cars).

The electric motor's job is to apply torque to the front wheel axle to spin the two front wheels. The control unit varies the speed of the car by increasing or decreasing the power applied to the motor. When the controller applies maximum power from the fuel-cell stack, the motor's rotor spins at 12,000 revolutions per minute, delivering a torque of 159 pound-feet. A single-stage planetary gear, with a ratio of 8.67:1, steps up the torque to apply a maximum of 1,375 pound-feet to each wheel. That's enough torque to move the 4,200-pound (1,905-kg) car 100 miles per hour (161 kph) on a level road. Smaller electric motors maneuver the wheels to steer the car, and electrically controlled brake calipers bring the car to a stop.

The gaseous hydrogen fuel needed to power this system is stored in three cylindrical tanks, weighing about 165 pounds (75 kilograms) total. The tanks are made of a special carbon composite material with the high structural strength needed to contain high-pressure hydrogen gas. The tanks in the current model hold about 4.5 pounds (2 kg) of hydrogen at about 5,000 pounds per square inch (350 bars). In future models, the Hy-wire engineers hope to increase the pressure threshold to 10,000 pounds per square inch (700 bars), which would boost the car's fuel capacity to extend the driving range.

Ultimately, GM hopes to get the fuel-cell stack, motors and hydrogen-storage tanks small enough that they can reduce the chassis thickness from 11 inches to 6 inches (15 cm). This more compact "skateboard" would allow for even more flexibility in the body design.


Chapter IV

Control

The Hy-wire's "brain" is a central computer housed in the middle of the chassis. It sends electronic signals to the motor control unit to vary the speed, the steering mechanism to maneuver the car, and the braking system to slow the car down.

At the chassis level, the computer controls all aspects of driving and power use. But it takes its orders from a higher power -- namely, the driver in the car body. The computer connects to the body's electronics through a single universal docking port. This central port works the same basic way as a USB port on a personal computer: It transmits a constant stream of electronic command signals from the car controller to the central computer, as well as feedback signals from the computer to the controller. Additionally, it provides the electric power needed to operate all of the body's onboard electronics. Ten physical linkages lock the body to the chassis structure.


































GM's diagram of the Autonomy design


The driver's control unit, dubbed the X-drive, is a lot closer to a video game controller than a conventional steering wheel and pedal arrangement. The controller has two ergonomic grips, positioned to the left and right of a small LCD monitor. To steer the car, you glide the grips up and down lightly -- you don't have to keep rotating a wheel to turn, you just have to hold the grip in the turning position. To accelerate, you turn either grip, in the same way you would turn the throttle on a motorcycle; and to brake, you squeeze either grip.

Electronic motion sensors, similar to the ones in high-end computer joysticks, translate this motion into a digital signal the central computer can recognize. Buttons on the controller let you switch easily from neutral to drive to reverse, and a starter button turns the car on. Since absolutely everything is hand-controlled, you can do whatever you want with your feet (imagine sticking them in a massager during the drive to and from work every day).

























The X-drive can slide to either side of the vehicle.


The 5.8-inch (14.7-cm) color monitor in the center of the controller displays all the stuff you'd normally find on the dashboard (speed, mileage, fuel level). It also gives you rear-view images from video cameras on the sides and back of the car, in place of conventional mirrors. A second monitor, on a console beside the driver, shows you stereo, climate control and navigation information.

Since it doesn't directly drive any part of the car, the X-drive could really go anywhere in the passenger compartment. In the current Hy-wire sedan model, the X-drive swings around to either of the front two seats, so you can switch drivers without even getting up. It's also easy to adjust the X-drive up or down to improve driver comfort, or to move it out of the way completely when you're not driving.

One of the coolest things about the drive-by-wire system is that you can fine-tune vehicle handling without changing anything in the car's mechanical components -- all it takes to adjust the steering, accelerator or brake sensitivity is some new computer software. In future drive-by-wire vehicles, you will most likely be able to configure the controls exactly to your liking by pressing a few buttons, just like you might adjust the seat position in a car today. It would also be possible in this sort of system to store distinct control preferences for each driver in the family.


















.














GM concept of the Autonomy with and without a body attached


The big concern with drive-by-wire vehicles is safety. Since there is no physical connection between the driver and the car's mechanical elements, an electrical failure would mean total loss of control. In order to make this sort of system viable in the real world, drive-by-wire cars will need back-up power supplies and redundant electronic linkages. With adequate safety measures like this, there's no reason why drive-by-wire cars would be any more dangerous than conventional cars. In fact, a lot of designers think they'll be much safer, because the central computer will be able to monitor driver input. Another problem is adding adequate crash protection to the car.

The other major hurdle for this type of car is figuring out energy-efficient methods for producing, transporting and storing hydrogen for the onboard fuel-cell stacks. With the current state of technology, actually producing the hydrogen fuel can generate about as much pollution as using gasoline engines, and storage and distribution systems still have a long way to go (see How the Hydrogen Economy Works for more information).

So will we ever get the chance to buy a Hy-wire? General Motors says it fully intends to release a production version of the car in 2010, assuming it can resolve the major fuel and safety issues. But even if the Hy-wire team doesn't meet this goal, GM and other automakers are definitely planning to move beyond the conventional car sometime soon, toward a computerized, environmentally friendly alternative. In all likelihood, life on the highway will see some major changes within the next few decades.

Chapter -V

Hy-wire Car Specification

· Top speed: 100 miles per hour (161 kph)

· Weight: 4,185 pounds (1,898 kg)

· Chassis length: 14 feet, 3 inches (4.3 meters)

· Chassis width: 5 feet, 5.7 inches (1.67 meters)

· Chassis thickness: 11 inches (28 cm)

· Wheels: eight-spoke, light alloy wheels.

· Tires: 20-inch (51-cm) in front and 22-inch (56-cm) in back

· Fuel-cell power: 94 kilowatts continuous, 129 kilowatts peak

· Fuel-cell-stack voltage: 125 to 200 volts

· Motor: 250- to 380-volt three-phase asynchronous electric motor

· Crash protection: front and rear "crush zones" (or "crash boxes") to absorb impact energy

· Related GM patents in progress: 30

· GM team members involved in design: 500+


Conclusion

By using Hy-Wire technology certain multi national companies like General Motors is fully intended to release a production version of the car in 2010, assuming it can resolve the major fuel and safety issues. The life on the high way will see some major changes within the next few decades.


References

· www.howstuffworks.com

· www.generalmoters.com